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Abstract
Novikov algebras were introduced in connection with the Poisson brackets
of hydrodynamic type and Hamiltonian operators in formal variational
calculus. They are a class of left-symmetric algebras with commutative
right multiplication operators, which can be viewed as bosonic. Fermionic
Novikov algebras are a class of left-symmetric algebras with anti-commutative
right multiplication operators. They correspond to a certain Hamiltonian
superoperator in a supervariable. In this paper, we commence a study on
fermionic Novikov algebras from the algebraic point of view. We will
show that any fermionic Novikov algebra in dimension �3 must be bosonic.
Moreover, we give the classification of real fermionic Novikov algebras on four-
dimensional nilpotent Lie algebras and some examples in higher dimensions.
As a corollary, we obtain kinds of four-dimensional real fermionic Novikov
algebras which are not bosonic. All of these examples will serve as a guide for
further development including the application in physics.

PACS numbers: 02.20.Sv, 02.30.Jr, 02.40.Hw

1. Introduction

Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic
type [1–3] and Hamiltonian operators in the formal variational calculus [4–9]. A Novikov
algebra A is a vector space over a field F with a bilinear product (x, y) → xy satisfying

(x1, x2, x3) = (x2, x1, x3) (1.1)

and

(x1x2)x3 = (x1x3)x2 (1.2)

0305-4470/02/4710053+11$30.00 © 2002 IOP Publishing Ltd Printed in the UK 10053
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for x1, x2, x3 ∈ A, where

(x1, x2, x3) = (x1x2)x3 − x1(x2x3). (1.3)

Novikov algebras are a special class of left-symmetric algebras which only satisfy
equation (1.1). Left-symmetric algebras are a class of non-associative algebras arising from
the study of affine manifolds, affine structures and convex homogeneous cones [10–14].

The commutator of a Novikov algebra (or a left-symmetric algebra) A

[x, y] = xy − yx (1.4)

defines a (sub-adjacent) Lie algebra G = G(A). Let Lx and Rx denote the left and right
multiplication operators, respectively, i.e. Lx(y) = xy,Rx(y) = yx,∀x, y ∈ A. Then
for a Novikov algebra, the left multiplication operators form a Lie algebra and the right
multiplication operators are commutative. A left-symmetric algebra is called right-nilpotent
or transitive if every Rx is nilpotent. The transitivity corresponds to the completeness of the
affine manifolds in geometry [10, 11].

In fact, the formal variational calculus given by Gel’fand and Dikii in [4, 5] is bosonic, and
a fermionic formal variational calculus was given by Xu in [8]. Moreover, motivated by the
supersymmetric theory, Xu gave a formal variational calculus of supervariables in [9] which
combines the bosonic theory of Gel’fand–Dikii and his fermionic theory. Novikov algebras
and certain new algebraic structures are related to the Hamiltonian superoperator in terms
of this theory. In particular, the algebraic structure (1.1)–(1.2) can be viewed as a bosonic
Novikov algebra due to the commutative right multiplication operators. On the other hand, a
fermionic Novikov algebra was introduced as a left-symmetric algebra with anti-commutative
right multiplication operators: an algebra is a fermionic Novikov algebra if its product satisfies
equation (1.1) and

(x1x2)x3 = −(x1x3)x2. (1.5)

It corresponds to the following Hamiltonian operator H of type 0 [9]:

H 0
α,β =

∑
γ∈I

(
a

γ

α,β�γ (2) + b
γ

α,β�γ D
)

a
γ

α,β, b
γ

α,β ∈ R. (1.6)

There has been a lot of progress in the study of bosonic Novikov algebras such as the
fundamental structure theory of a finite-dimensional bosonic Novikov algebra over an
algebraically closed field with characteristic 0 [15], infinite-dimensional simple bosonic
Novikov algebras [16–18], finite-dimensional simple bosonic Novikov algebras over
an algebraically closed field with prime characteristic [19], the Poisson structures on
Novikov algebras [20], the classification of bosonic Novikov algebras in low dimensions
[21, 22], the realization of bosonic Novikov algebras [23, 24], the invariant bilinear forms
on bosonic Novikov algebras [25], and so on. However, we know very little about fermionic
Novikov algebras. One of the reasons is due to very few examples: it is not easy to obtain
non-trivial fermionic Novikov algebras, as said in [9]. In fact, a six-dimensional real fermionic
Novikov algebra was constructed in [9], which is the first non-bosonic example.

In this paper, we commence to study fermionic Novikov algebras from the algebraic
point of view. We mainly give their classification in low dimensions, and some examples in
higher dimensions. In particular, we obtain kinds of four-dimensional real fermionic Novikov
algebras which are not bosonic. They are the non-bosonic fermionic Novikov algebras in the
lowest dimension. Like the study of bosonic Novikov algebras, the study of these examples
will serve as a guide for further development.

The paper is organized as follows. In section 2, we give a brief discussion on the general
theory of fermionic Novikov algebras. In section 3, we give the classification of fermionic
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Novikov algebras over the complex field in dimension 3. We can see that all of them are
bosonic. In section 4, based on some results in [10], we give the classification of real fermionic
Novikov algebras on four-dimensional nilpotent Lie algebras. In section 5, we obtain some
examples in higher dimensions. These examples have an interesting geometric background,
although they are both bosonic and fermionic. In section 6, we give some conclusions based
on the discussion in the previous sections.

2. Fermionic Novikov algebras

First, we can see that equation (1.5) is equivalent to the following condition:

R2
x = 0 ∀x ∈ A. (2.1)

In fact, equation (2.1) can be ‘linearized’ to equation (1.5) by replacing x by x + y. Thus
a fermionic Novikov algebra is a left-symmetric algebra the square of whose every right
multiplication operator is zero. Hence, we have

Corollary 1. Every fermionic Novikov algebra is transitive.

Example 1. The one-dimsional fermionic Novikov algebra A must be trivial, that is, e1e1 = 0,
where e1 is a basis of A.

Example 2. The classification of left-symmetric algebras in dimension 2 over the complex
field was given in [14]. With the additional condition (1.5), it is easy to get the classification
of two-dimensional complex fermionic Novikov algebras: recall that the (form) characteristic
matrix of a Novikov algebra is defined as

A =



∑n
k=1 ck

11ek · · · ∑n
k=1 ck

1nek

· · · · · · · · ·∑n
k=1 ck

n1ek · · · ∑n
k=1 ck

nnek


 (2.2)

where {ei} is a basis of A and eiej = ∑n
k=1 ck

ij ek. Hence two-dimensional complex fermionic
Novikov algebras are

(T1)

(
0 0
0 0

)
(T2)

(
0 0
0 e1

)
(T3)

(
0 0

−e1 0

)
.

It is easy to see that the fermionic Novikov algebras appearing in the above examples are
bosonic [21]. Let A be a bosonic–fermionic Novikov algebra, then for any x, y ∈ A, we have
RxRy = RyRx = 0. That is (xy)z = 0 for any x, y, z ∈ A. In particular, a Novikov algebra
A is bosonic and fermionic if and only if Lx = 0 for any x ∈ A2, where A2 is spanned by
ab, a, b ∈ A.

Let R(A) be the Lie algebra generated by R(A), where R(A) is the set spanned by all
Rx . Set

R1 = R(A) Ri = [R1,Ri−1]. (2.3)

Then

R(A) = R1 + · · · + Ri + · · · . (2.4)

It is the smallest Lie algebra containing R(A).

Claim 1. Let A be a fermionic Novikov algebra. Then

R(A) = R1 + R2 = R(A) + [R(A),R(A)] = R(A) + R(A)R(A) (2.5)
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where R(A)R(A) is the subspace spanned by RxRy . Moreover, R(A) is a nilpotent Lie
algebra.

In fact, for Rx,Ry ∈ R(A), we have

[Rx,Ry] = RxRy − RyRx = 2RxRy (2.6)

[Rx,RyRz] = RxRyRz − RyRzRx = −RyRxRz − RyRzRx = RyRzRx − RyRzRx = 0.

(2.7)

Hence Rn = 0 for any n � 3. Moreover, for any a ∈ R(A), it is easy to show that a is
nilpotent. Thus, by Engel’s theorem, R(A) is a nilpotent Lie algebra.

Corollary 2. Let A be a fermionic Novikov algebra over the complex field. Then there exists
x ∈ A, x �= 0 such that xy = 0 for every y ∈ A.

In fact, by Engel’s theorem, we can choose a basis {e1, . . . , en} in A, such that Re1 , . . . , Ren

can be put into strictly upper triangular matrices simultaneously under this basis, that is,

Rei
(ej ) =

n∑
k=1

ai
jkek ai

jk = 0 j � k. (2.8)

In particular, Rei
en = 0 for any ei . So eny = 0 for every y ∈ A.

We recall that for a left-symmetric algebra A, the kernel ideal N(A) = {a ∈ A|ax = 0,

∀x ∈ A} is an ideal of A and N(A) �= 0 if and only if the sub-adjacent Lie algebra contains
nontrivial one-parameter subgroups of translations [11]. Thus, by corollary 2, we know

Corollary 3. The kernel ideal of any finite-dimensional fermionic Novikov algebra over the
complex field is non-zero. Hence, there does not exist any finite-dimensional simple fermionic
Novikov algebra over the complex field. Here, an algebra is called simple if A does not contain
any ideal except zero and itself, and A2 �= 0. Moreover, the sub-adjacent Lie algebra of a
fermionic Novikov algebra must contain nontrivial one-parameter subgroups of translations
[11].

At the end of this section, we discuss the Lie transformation algebras of fermionic Novikov
algebras: the Lie algebra L(A) generated by all linear transformations Lx,Ry (∀x, y ∈ A) is
called the Lie multiplication algebra (or Lie transformation algebra). Let M = R(A) + L(A)

denote the set spanned by all Lx,Ry . Then L(A) is the smallest Lie algebra containing M.
A derivation D of A is a linear transformation satisfying

D(xy) = xD(y) + D(x)y ∀x, y ∈ A. (2.9)

The set D(A) of derivations is a Lie algebra with the product [D1, D2] = D1D2 − D2D1. It is
the Lie algebra of the automorphism group of A [26]. A derivation D of A is called an inner
derivation if D ∈ L(A). It is easy to see that the set Inn(A) of all inner derivations is a (Lie)
ideal of the Lie algebra D(A). The inner derivation corresponds the inner automorphism of
A. Inn(A) may also be regarded as a candidate for the space B1(A,A) of 1-coboundaries. If
so, the cohomology H 1(A,A) is just D(A)/Inn A. We have another claim:

Claim 2. The Lie transformation algebra of a fermionic Novikov algebra A is

L(A) = L(A) + R(A) + R(A)R(A). (2.10)

In fact, any element of R(A) + L(A) has the form Rx + Ly . By equations (1.2), (1.3) and
(2.6), we have

[Lx,Ly ] = L[x,y] [Lx,Ry] = Rxy − RyRx [Rx,Ry] = 2RxRy.
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Therefore[
Lx1 + Ry1 , Lx2 + Ry2

] = L[x1,y1] + Rx1y2 − Ry2Rx1 − Rx2y1 + Ry1Rx2 + 2Ry1Ry2 .

Moreover, we have

[Rx1Rx2 , Rx3 ] = 0

and [
Rx1Rx2 , Lx3

] = Rx1

[
Rx2 , Lx3

]
+

[
Rx1 , Lx3

]
Rx2

= Rx1

(
Rx2Rx3 − Rx3x2

)
+

(
Rx1Rx3 − Rx3x1

)
Rx2

= −Rx1Rx3x2 − Rx3x1Rx2 .

Hence L(A) = L(A) + R(A) + R(A)R(A).

3. Three-dimensional complex fermionic Novikov algebras

In this section, let A be a fermionic Novikov algebra over the complex field in dimension 3.
From the discussion in the previous section, we can choose a basis {e1, e2, e3} in A such that

Re1 =

0 a1

12 a1
13

0 0 a1
23

0 0 0


 Re2 =


0 a2

12 a2
13

0 0 a2
23

0 0 0


 Re3 =


0 a3

12 a3
13

0 0 a3
23

0 0 0


 . (3.1)

Since R2
ei

= 0 and Rei
Rej

+ Rej
Rei

= 0, we have

ai
12a

i
23 = 0 i = 1, 2, 3 (3.2)

ai
12a

j

23 + a
j

12a
i
23 = 0 i �= j i, j = 1, 2, 3. (3.3)

Claim 3. Any fermionic Novikov algebra over the complex field in dimension 3 must be
bosonic.

In fact, we have the following cases:

Case 1: a1
12 �= 0. Then by equations (3.2) and (3.3), we have ai

23 = 0, i = 1, 2, 3.
Therefore, A satisfies Rei

Rej
= Rej

Rei
= 0, that is, A is a bosonic Novikov algebra.

Case 2: a1
23 �= 0. Then by equations (3.2) and (3.3), we have ai

12 = 0, i = 1, 2, 3. Hence,
A is a bosonic Novikov algebra since Rei

Rej
= Rej

Rei
= 0.

Case 3: a1
12 = a1

23 = 0. Similar to the discussion in the above cases, we can know that
if a2

12 �= 0 or a2
23 �= 0, A is a bosonic Novikov algebra. So we can only discuss the case

a2
12 = a2

23 = 0. But, for this case, we still have Rei
Rej

= Rej
Rei

= 0, hence A is still a
bosonic Novikov algebra.

Corollary 4. Any fermionic Novikov algebra over the real field in dimension �3 must be
bosonic.

Otherwise, if there exists a real fermionic Novikov algebra which is not bosonic, then its
complexification cannot be bosonic, which is contradictory to the above claim.

By the classification of three-dimensional (bosonic) Novikov algebras over the complex
field given in [21] and the additional condition Rei

Rej
= 0, we can easily get the classification



10058 C Bai et al

of three-dimensional fermionic Novikov algebras over the complex field:

(A1)


0 0 0

0 0 0
0 0 0


 (A2)


0 0 0

0 0 0
0 0 e1


 (A3)


0 0 0

0 e1 0
0 0 e1




(A5)


0 0 0

0 0 e1

0 −e1 0


 (A6)


0 0 0

0 e1 e1

0 −e1 le1


 (A8)


0 0 0

0 0 0
0 e1 e2




(A9)


0 0 0

0 0 0
0 e2 0


 (A10)


0 0 0

0 0 0
0 e2 e1




(A11)


 0 0 0

0 0 0
e1 le2 0


 (|l| � 1, l �= 0) (A12)


 0 0 0

0 0 0
e1 e1 + e2 0


 .

4. Four-dimensional real fermionic Novikov algebras on nilpotent Lie algebras

It is obvious that the discussion in section 3 cannot be extended to higher dimensions. On
the other hand, due to geometric reasons, the study of transitive left-symmetric algebras on
nilpotent Lie algebras can be regarded as the first step to constructing a general theory of
transitive left-symmetric algebras on all solvable Lie algebras [10]. Hence, Kim gave a
classification of transitive left-symmetric algebras on four-dimensional nilpotent Lie algebras
over the real field R through an extension theory in [10]. Based on this result and the additional
condition Rei

Rej
= −Rej

Rei
, we can get the classification of four-dimensional real fermionic

Novikov algebras on nilpotent Lie algebras as follows.
Let {e1, e2, e3, e4} be a basis. There are three four-dimensional nilpotent Lie algebras up

to isomorphism:

A = 〈e1, e2, e3, e4|[ei, ej ] = 0〉 Abelian

H = 〈e1, e2, e3, e4|[e2, e3] = e1, other products are zero〉
T = 〈e1, e2, e3, e4|[e2, e3] = e1, [e2, e4] = e2, other products are zero〉.

On the Lie algebra A, the fermionic Novikov algebras are given as follows (we use the
symbols in [10]):

(3)




0 0 0 0
0 e1 0 0
0 0 e1 0
0 0 0 e1


 (4)




0 0 0 0
0 e1 0 0
0 0 e1 0
0 0 0 −e1


 (51)0




0 0 0 0
0 0 0 0
0 0 e1 0
0 0 0 e1




(52)0




0 0 0 0
0 0 0 0
0 0 e1 0
0 0 0 −e1


 (53)0




0 0 0 0
0 0 0 0
0 0 e1 e2

0 0 e2 −e1


 (54)




0 0 0 0
0 0 0 0
0 0 e1 0
0 0 0 e2




(57)0




0 0 0 0
0 0 0 0
0 0 e1 e2

0 0 e2 0


 (60)1




0 0 0 0
0 0 0 0
0 0 0 e1

0 0 e1 e3


 (61)




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 e1



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(62)




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 .

On the Lie algebra H, the fermionic Novikov algebras are given as follows:

(5)




0 0 0 0
0 e1 e1 0
0 −e1 0 e1

0 0 e1 0


 (6)




0 0 0 0
0 0 e1 0
0 −e1 0 e1

0 0 e1 0


 (7)t




0 0 0 0
0 e1 e1 0
0 −e1 te1 0
0 0 0 e1




(8)t
t � 0




0 0 0 0
0 e1 e1 0
0 0 te1 0
0 0 0 −e1

t � 0


 (30)0




0 0 0 0
0 0 0 0
0 0 e1 0
0 e1 0 e2


 (31)0




0 0 0 0
0 0 0 0
0 0 0 e1

0 e1 0 e2




(46)




0 0 0 0
0 0 0 0
0 0 0 e2

0 0 −e2 0


 (47)




0 0 0 0
0 0 0 0
0 0 e1 e1

0 0 −e1 0


 (48)




0 0 0 0
0 0 0 0
0 0 e1 e2

0 0 −e2 0




(49)




0 0 0 0
0 0 0 0
0 0 e1 e2

0 0 −e2 e1


 (50)




0 0 0 0
0 0 0 0
0 0 e1 e2

0 0 −e2 −e1


 (51)t

t > 0




0 0 0 0
0 0 0 0
0 0 e1 te1

0 0 −te1 e1

t > 0




(52)t
t > 0




0 0 0 0
0 0 0 0
0 0 e1 te1

0 0 −te1 −e1

t > 0




(53)t
t > 0




0 0 0 0
0 0 0 0
0 0 e1 (1 + t)e2

0 0 (1 − t)e2 −e1

t > 0




(55)t




0 0 0 0
0 0 0 0
0 0 e1 e1 + te2

0 0 −e1 − te2 e2


 (56)




0 0 0 0
0 0 0 0
0 0 e1 e1 + e2

0 0 −e1 + e2 0




(57)t
t > 0




0 0 0 0
0 0 0 0
0 0 e1 (1 + t)e2

0 0 (1 − t)e2 0
t > 0


 (58)




0 0 0 0
0 0 0 0
0 0 0 0
0 0 e1 e3




(59)




0 0 0 0
0 0 0 0
0 0 0 e1

0 0 e2 e3


 (60)t

t �= 1




0 0 0 0
0 0 0 0
0 0 0 e1

0 0 te1 e3

t �= 1



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(44)1




0 0 0 0
0 0 0 e1

0 0 −e1 0
0 e1 e2 e3


 .

On the Lie algebra T, the fermionic Novikov algebras are given as follows:

(42)




0 0 0 0
0 0 0 0
0 0 0 0
0 e1 e2 e3


 (44)t

t �= 1




0 0 0 0
0 0 0 e1

0 0 −e1 0
0 te1 e2 e3

t �= 1


 .

Comparing with the classification of (bosonic) transitive Novikov algebras over the real
field on four-dimensional nilpotent Lie algebras given in [22], we know that except for the
type 44t (for any t ∈ R), the fermionic Novikov algebras given above are bosonic. Hence
the algebras of type 44t are kinds of non-bosonic fermionic Novikov algebras in the lowest
dimension.

5. Some fermionic Novikov algebras in higher dimensions

From the discussion in [11], we know that a left-invariant connection ∇ on G is adapted to
the automorphism structure of G if and only if the linear mapping θ : G → gl(G) defined by
θ(x) = ∇x takes values in the algebra Der(G), where Der(G) is the Lie algebra of the derivations
of the Lie algebra G. Hence we call a left-symmetric algebra (a bosonic or fermionic Novikov
algebra) A a derivation algebra if its every left multiplication operator Lx or its every right
multiplication operator Rx is a derivation of its sub-adjacent Lie algebra G(A). Therefore,
the Lie group G possesses a left-invariant locally flat connection defined by a left-symmetric
algebra (a bosonic or fermionic Novikov algebra) which is adapted to the structure of its
automorphisms if and only if the Lie algebra G is sub-adjacent to a left-symmetric derivation
algebra (a bosonic or fermionic Novikov derivation algebra).

It is quite interesting to see that many examples of left-symmetric derivation algebras
given in [11] are both bosonic [27] and fermionic Novikov algebras. Thus, in this section, we
obtain some fermionic Novikov algebras in higher dimensions, although they are also bosonic.
We would like to point out that these example are still important and interesting due to their
geometric background given above. For the paper to be self-contained, we briefly introduce
these examples as follows.

Example 3. There are two important classes of fermionic Novikov derivation algebras in
dimension 5 given in [11] with the following characteristic matrices, respectively:



0 0 0 0 0
0 0 0 0 0

−e1 −e2 0 e1 e1

−e1 −e1 e1 − e2
1
2 (e1 + e2)

1
2 (e1 + e2)

−e1 −e1 e1 − e2
1
2 (e1 + e2)

1
2 (e1 + e2)







λe3 + βe4 + µe5 e3 + λe4 + γ e5 e4 e5 0
λe4 + γ e5 e4 + δe5 e5 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


 .
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Example 4. We can construct a series of fermionic Novikov derivation algebras in dimension
�5 through the extension of a five-dimensional fermionic Novikov derivation algebra: let A

be the Lie algebra in dimension 5 with the following non-zero products:

[e1, e3] = e5 [e1, e3] = e3 [e2, e4] = e4.

A fermionic Novikov derivation product on A is obtained by taking for the left multiplication
operators the following endomorphisms:

Le1 = ad(e1) Le2 = ad2(e2) Le3 = Le4 = Le5 = 0,

where ad is the adjoint operator of Lie algebra, that is, ad(x)(y) = [x, y]. Consider the Lie
algebra A′ = A × Ce6 obtained from A by imposing

[e1, e5] = e6 [ei, e6] = 0 for 1 � i � 6.

The fermionic Novikov derivation product on A′ is given as

L′
e1

= ad′(e1) L′
e2

= ad′2(e2) L′
e3

= L′
e4

= L′
e5

= L′
e6

= 0.

Thus, by a series of such extensions we can obtain a series of fermionic Novikov derivation
algebras.

Example 5. Let A be a 2-solvable Lie algebra, that is, the derived ideal [A,A] is
Abelian. Suppose A can be decomposed as a direct sum of subspaces A = D(A) ⊕ S

with [S, S] ⊂ C(A), where D(A) = [A,A] and C(A) is the centre of A. For every element a
in A, we denote by aD and aS the respective components of a in D(A) and S. Then

ab = [
aS, bD + 1

2bS

]
defines a fermionic Novikov derivation product on A.

Example 6. There exists a fermionic Novikov derivation product on any 2-solvable Lie
algebra with trivial centre. In fact, from the discussion in [11], such a Lie algebra A has a
decomposition:

A = D(A) ⊕ C

where C is an Abelian Cartan subalgebra of A. Then A satisfies the condition in example 5
since [C,C] = {0} = C(A). Thus the fermionic Novikov derivation product on A can be
defined by

LaD = 0 LaC
= ad(aC)

where aD ∈ D, aC ∈ C.

Example 7. There are certain kinds of 2-solvable Lie algebras with the trivial centre having
the property that it is sub-adjacent to a unique fermionic Novikov derivation structure. Such
an example can be obtained from [11]: let A be an n-dimensional Lie algebra with the product

[ei, ej ] = 0 i, j � 2 [e1, ei] = λiei i � 2 λi �= 0, the λibeing pairwise distinct.

The (unique) fermionic Novikov derivation structure is given by

e1e1 = 0 e1ei = λiei eiej = 0 i, j � 2.

Example 8. A filiform Lie algebra A in dimension n is an (n − 1)-step nilpotent Lie algebra,
that is, the lower central series {Ak} of A (A0 = A and Ak = [Ak−1, A] for k � 1) satisfying
An−1 = 0, An−2 �= 0. The study of filiform Lie algebra is quite important [28]. For example,
the first example of the nilpotent Lie algebra which is not sub-adjacent to a left-symmetric
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algebra is a filiform Lie algebra [29]. Let A be a filiform Lie algebra with an Abelian
commutator subalgebra. Then the product is given by [28] (non-zero products)

[e1, ei] = ei+1 i = 2, . . . , n − 1 [e2, ei] =
n∑

k=i+2

α2,k−i+3ek i = 3, . . . , n − 2

with parameters α2,s , where 5 � s � n. Then it is easy to check that the algebra given by the
following products is a fermionic Novikov derivation algebra:

e1ei = ei+1 i = 2, . . . , n − 1 e2ei = [e2, ei] i = 3, . . . , n − 2

e2e2 = α2,5e4 + · · · + α2,nen−1 eiej = 0 otherwise.

6. Conclusions and discussion

According to the discussion in previous sections, we have the following conclusions:

(1) There does not exist any finite-dimensional simple fermionic Novikov algebra over the
complex field since its kernel ideal is not zero. However, it is still unknown whether it is
true for an infinite-dimensional fermionic Novikov algebra or over other fields.

(2) All fermionic Novikov algebras in dimension �3 over the complex or real field are bosonic
and there exist kinds of four-dimensional non-bosonic fermionic Novikov algebras. Hence
these four-dimensional examples are in the lowest dimension.

(3) It is interesting to see that many left-symmetric derivation algebras are both bosonic and
fermionic Novikov algebras, that is, for these examples of left-symmetric algebras, the
conditions of a derivation algebra, a bosonic Novikov algebra and a fermionic Novikov
algebra are consistent.
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